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Dynamical algebra of spin waves in localised-spin models 
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NIG2WI,  Canada 
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Abstract. The idea of the spectrum generating algebra (SGA) is used to study the low-lying 
excitations in various localised-spin models of ferromagnetic, ferrimagnetic and antifer- 
romagnetic solids. The noncompact algebra so(2, I )  - su( 1, 1 )  is found to generate the spin 
wave or the magnon spectrum for ferromagnetic, ferrimagnetic and antiferromagnetic 
Bravais lattices with nearest-neighbour exchange interactions (Heisenberg model). The 
ferromagnetic case is treated including dipolar interactions in the model. For a quadratic 
antiferromagnet with easy-plane anisotropy the SGA is found to be the direct product 
so(2, l)@s0(2, l)-s0(2,2).  For the XY and the Heisenberg-Ising models of an antifer- 
romagnetic linear chain the SGA is the compact counterpart of so(2, l ) ,  i.e., so(3) - su(2). 
It is concluded that if the magnons are quantised as bosons then the SGA is the noncompact 
algebra so(2, I ) ,  and if they are quantised as fermions then the SGA is the compact angular 
momentum algebra so(3). 

1. Introduction 

It has been known for some time that the energy spectra associated with some 
Hamiltonians or the eigenvalues of some differential equations can be obtained from 
a knowledge of suitable representations of certain Lie algebras (Barut 1964a, b, 1973, 
Lanik 1967, 1968). The algebra used to obtain the eigenvalues and the eigenfunctions 
is referred to as the spectrum generating algebra (SGA) or the dynamical algebra. 
Wybourne (1974) and Barut and Raczka (1977) have discussed several interesting 
applications of the method to familiar quantum mechanical systems. Initial applica- 
tions of the method were in the study of the mass and energy spectra of elementary 
particles (Barut 1964a, b, Barut and Bohm 1965, Dothan er al 1965) and many 
applications (Aldrovandi and Leal Ferreira 1969, Cordero and Hojman 1970, Cordero 
and Ghirardi 197 1, Cordero et al 197 1)  involving various single quantum mechanical 
systems soon followed. The idea was carried over to the realm of second quantised 
Hamiltonians by Solomon (1971), when he used it to derive the energy of low-lying 
excitations in a superfluid boson system. This seems to be the first application of the 
method in the study of a condensed matter system. In a later application Solomon 
(1981) discussed superconductivity in the BCS model and superfluidity of 3He. Most 
notable recent applications of the method in the field of condensed matter theory 
include the study of the charge density wave (CDW) state in one-dimensional many- 
electron systems (Solomon and Birman 1982), the phenomena of coexistence of the 
CDW phase and superconductivity (Birman and Solomon 1982) and superconductivity 
and spin density waves (Solomon and Birman 1984a, b, 1985). 
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In view of these developments it is desirable to apply the method to the study of 
excitations in various magnetic systems. In the present paper we propose to discuss 
the SGA of spin waves in ‘localised-spin’ models of magnetic solids. In magnetic 
crystals some atoms are equipped with magnetic moments which, at sufficiently low 
temperatures, form a regular pattern with a characteristic unit cell. Spin waves or 
magnons are the low-lying excitations of this static spin configuration. The classical 
picture is one where the spin precesses around its equilibrium position at a small angle. 
The localised-spin models are inadequate to explain the strongly magnetic properties 
of the iron transition series metals and their alloys, which must be explained by band 
or the itinerant electron theory of magnetism (see Herring (1966) for a review on this 
subject). In the present paper we will not consider models of itinerant or partly itinerant 
(Stearns 1978) electron magnetism but will concentrate entirely on localised-spin 
models. 

The literature on the spin wave theory of localised-spin models is vast and we will 
refer to the book by Mattis (1981) and an article by Thorpe (1978), which include 
up-to-date references to various works in this field. Both semiclassical (Heller and 
Kramers 1934) and quantum mechanical (Slater 1930, Bloch 1932, Holstein and 
Primakoff 1940) methods have been adopted to study the spin waves. Holstein and 
Primakoff (1940) used creation and destruction operators to study these magnetic 
excitations which behave as bosons at sufficiently low temperatures. In an excellent 
review article, Van Kranendonk and Van Vleck (1958) showed how the spin waves 
could as well be studied as harmonic oscillator states. In their words ‘the distinction 
(of the harmonic oscillator approach) from the conventional approach of Bloch ( 1932), 
and of Holstein and Primakoff (1940), based on creation and annihilation operators, 
is to a considerable extent only a semantic one, but nevertheless is probably of use to 
those readers to whom harmonic oscillators are more intuitive than the techniques of 
quantum field theory’. This idea that the spin waves in various localised-spin models 
can be viewed as harmonic oscillator states is important for the study of these excitations 
from a group-theoretical or algebraic point of view. The harmonic oscillator spectrum 
is discrete, integer-spaced, with a lower bound and without an upper bound. This 
spectrum is identical with the spectrum of one of the generators JI of the noncompact 
Lie algebra so(2, 1) in the D+ representation (Wybourne 1974, pp 146-8), where JI is 
also the generator of the corresponding compact subalgebra so(2). Indeed, so(2, 1)  is 
known as the SGA of an isotropic harmonic oscillator (Wybourne 1974, ch 18). 
Consequently spin waves can be visualised as either boson excitations or ‘harmonic 
oscillator’ states of a localised-spin magnetic system or, from an algebraic point of 
view, as the eigenstates of one of the generators of so(2, 1). While the difference 
between the former two viewpoints is largely a semantic one, the latter viewpoint may 
provide further insight into the study of more complex phenomena such as the interplay 
and coexistence of superconductivity, magnetism and CDW (Huang 1985). The purpose 
of the present paper, apart from offering this alternative viewpoint, is to unify the 
results obtained for models of ferromagnetic, ferrimagnetic and antiferromagnetic 
materials and to point out the similarity in the algebraic structure of the Hamiltonians 
in these models. In most models this algebraic structure is that of so(2, 1) or the 
isomorphic algebra su( 1 , l ) .  When the spectrum shows two distinct branches, as in a 
quadratic antiferromagnet with an easy-plane anisotropy (Lebesque et al1978, Balucani 
et a1 1980), one has to consider the direct product s0(2,1)0s0(2, l), with each algebra 
giving rise to one branch of the spectrum. In the XY and Heisenberg-Ising models 
of an antiferromagnetic chain (Lieb et a1 1961) the spin wave excitations appear to 
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obey the fermion statistics. In such a case the dynamical algebra is the compact 
counterpart of so(2, l ) ,  i.e., so(3)-su(2). Thus it is expected that if the magnons are 
quantised as bosons then the SGA is s0(2)-su(l, l ) ,  and if they are quantised as 
fermions then the SGA is so(3) - 4 2 ) .  In the appendix we provide arguments in favour 
of this conjecture. 

In our discussion of the dynamical algebra of various cases we will use Hamiltonians 
expressed in harmonic oscillator coordinates as well as second quantised operators 
according to our convenience. This will help us use previously derived results as well 
as make contact with both the approaches. The present paper is divided into the 
following sections. In 0 2 we provide a brief outline of the method of dynamical 
algebra. In $3 3-6 we apply the method to various localised-spin models of magnetic 
solids. In 0 7 we comment on the directions in which future work in this field should 
be done. 

2. The method of dynamical algebra 

The method of dynamical or spectrum generating algebra has been adequately discussed 
by Wybourne (1974, ch 18) and Solomon (1981). In this method the Hamiltonian of 
an interacting system is first expressed as an element of a Lie algebra g. This algebra 
is determined by the commutation relations between the operators appearing in the 
Hamiltonian. If the Hamiltonian is given by a sum over a particular quantum label 
k, then g is the direct sum of isomorphic Lie algebras gk: 

and algebraic treatment of the Hamiltonian is determined essentially by gk. The 
spectrum and the eigenstates of the Hamiltonian are generated in a suitable unitary 
representation of gk, the need for a unitary representation arising because of the 
hermiticity of the Hamiltonian. 

The Hamiltonian is first written as a linear combination of the generators of the 
algebra gk. The next step is the diagonalisation of the Hamiltonian. This is achieved 
by an automorphism of gk, which can be brought about by subjecting the Hamiltonian 
to a suitable rotation in the space of gk. The rotation is equivalent to a Bogoliubov 
transformation and is chosen so that the Hamiltonian can be written as a sum of 
commuting generators of gk. The spectrum of these generators in a suitable unitary 
representation of gk provides the spectrum of the Hamiltonian. The energy eigenstates 
can be obtained from a knowledge of this rotation and the eigenstates of the diagonalis- 
ing generators. 

It has been pointed out by Solomon (1981) that the rotation needed to diagonalise 
the Hamiltonian need not be carried out explicitly. Instead, the Hamiltonian can be 
expressed as a matrix M in a low-dimensional faithful representation of the Lie algebra. 
One can then make use of the invariants 

Tr M”, n = 1,2, .  . . , ( 1 )  

of which there are 1 independent ones for a Lie algebra of rank 1. In our study of the 
dynamical algebra of spin waves we will have the opportunity to illustrate this method 
as well as the one involving rotation. 
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3. Spin waves in a ferromagnet 

We start by considering the simplest model of a ferromagnetic system that exhibits 
spin waves. We consider a system of spins localised on a Bravais lattice placed in an 
external magnetic field, and assume a simple isotropic Heisenberg interaction between 
the nearest neighbours. The Hamiltonian of this spin system is 

,] I 

In ( 2 ) ,  h is an external field dependent quantity. The exchange integral Jtl is equal to 
J when i and j are nearest neighbours to each other and zero otherwise. J is positive 
for ferromagnetics. The spin-spin interaction term in ( 2 )  is called isotropic because 
the scalar product S;S, depends only on the angle between the vectors S, and S, and 
is independent of the direction of their resultant. 

The low-lying excitations of the Hamiltonian ( 2 )  are spin waves. If one neglects 
interactions among the spin waves, then this Hamiltonian can be represented in a 
diagonal form in boson creation and annihilation operators (Holstein and Primakoff 
1940) or as a sum over harmonic oscillator Hamiltonians (Van Kranendonk and Van 
Vleck 1958). To study the dynamical algebra of ( 2 )  one could use either form. In the 
present section we will use the harmonic oscillator form of the Hamiltonian (2). 

To achieve the transformation of (2) to harmonic oscillator coordinates, one first 
considers the spin-deviation quantum number n, = s - m, where m is the z component 
of the atomic spin S,. n, measures the deviation of S: from its maximum value s. The 
eigenvalues of the spin-deviation operator n, = s - S: are 0, 1,2, . . . , 2 s .  In a representa- 
tion in which this operator is diagonal, the nonvanishing matrix elements of the three 
components of S, are given by 

(n,lS:ln, + 1) = (n, + l/S:In,) =:(n, + 1) ' l2 (2s  - n , ) ' 1 2 ,  

( n , l ~ ; ' l n , +  l )= (n ,+  I/SyJn,)* = - f i ( n , +  1)'/*(2s- n,)'", (3) 

(n,lS:ln,) = s - n,, 0 S n, s 2s. 

The matrices of the components of SI have the form (3) with respect to n,, but are 
diagonal with respect to n, of all the other atoms in the crystal. Thus the matrices of 
S, are the direct products of the matrices (3) and N - 1 unit matrices, where N is the 
total number of spins. 

We now consider the matrix elements of the coordinate x, and the momentum p ,  
of a harmonic oscillator of mass m and angular frequency o between its energy 
eigenstates In,) (see e.g. Gottfried 1974): 

(n,lx,ln,+ I > = ( n , +  Ijx,ln,)= ( h / 2 m ~ ) ' / ~ ( n , +  I)'/', 

(n , lp , ln ,+  l ) = ( n , +  Ilp,ln,)* = - i ( h m ~ / 2 ) ' / ~ ( n , +  1)'12, 
(4)  

where n, corresponds to the number of quanta with which the oscillator is excited, i.e., 

(ntlp5/2m +(mo2/2)xf-Aw/21n,) = n,ho. ( 5 )  

Q, = (mw/h)'/'x,, P, = (hmw)-'/2p,, ( 6 )  

Introducing dimensionless variables 
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equations (3) and (4) can be written as 

(nlls1/2Q,Jn,+ l ) = ( n l +  11s’/2Qllnl)=f(nl+ 1)1/2(2s)1/2, 

(n,ls1/2P,lnl + I )  = (n, + l(s’/2P,ln,)* = -ii(nl + 1 ) ’ / ~ ( 2 s ) ’ / ~ ,  

( n J s  - $( Pf + Qf - l)ln,) = s - n,. 

(7) 

The sets of matrices (3) and (7) are strikingly similar for small values of n,. The theory 
developed on the basis of this similarity is valid only for low occupation number for 
every oscillator. For n, = s, the approximation is quantitatively incorrect and when 
n, 3 2s it breaks down totally, since although (7) continues to be valid, there is no 
corresponding structure in angular momentum space. 

Thus for small spin-deviations one can make the substitutions 

S: = QIs‘l2, sp = P1s1/2, s: = s -$( Pf+ Qf - 1) (8) 

Hred = Eo+ ( JSZ + h )  i( Pf + Qf - 1)  -4Js (9) 

in (2) and discarding quartic terms, one obtains the ‘linearised’ or ‘reduced’ Hamiltonian 

( QIQ, + PIP,), 
I NN 

where z = number of nearest neighbours of any given spin, and 

Eo = - h NS - i NJs’z 

is the energy of the completely saturated state in which all spins are parallel to the 
applied field. 

The reduced Hamiltonian (9) represents a set of harmonic oscillators with nearest- 
neighbour interactions. It can be transformed into a Hamiltonian representing un- 
coupled oscillators by using the Slater transformation (Slater 1930) to the real standing 

where ri are the position vectors of the spins 

k,<O ( lob)  

in the lattice and k are the reciprocal 
lattice vectors, assuming periodic boundary conditions for the wavefunctions. 

The transformed Hamiltonian is 

Hred = &+E f( Pi + Qi - l)hwk, 
k 

where 

R w k  = h + J S  C (1 -COS k . 7 )  = h +fJsk2a2+O(k4).  
Y 

The sum in (12) is over the vectors y connecting a given spin to its z nearest neighbours 
and a = ( y (  for a simple cubic lattice. Auk is interpreted as the energy of the ‘magnons’ 
or ‘spin waves’ in state k The eigenvalues of the operator &(Pi + Q; - 1) are integers 
0, 1,2,. . . and are interpreted as the number of magnons in the state k This result 
follows from the known integer-spaced energy spectrum of a harmonic oscillator. 
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Alternatively one can define boson creation and annihilation operators (see e.g. the 
analogous discussion of a phonon spectrum by Kittel (1963, ch 2)) by taking linear 
combinations of the momentum and the position operators in (11) and express the 
Hamiltonian in a bilinear form in these operators, the latter being interpreted as the 
occupation number operator. This, in effect, relates the harmonic oscillator approach 
to that of Holstein and Primakoff (1940). 

Alternative to the harmonic oscillator and the boson excitation approach is the 
algebraic method, where one visualises the Hamiltonian (11)  as an element of a Lie 
algebra. As mentioned in 9 1, the operator ;(Pi+ Qi)  can be expressed as one of the 
generators J :  of the noncompact algebra so(2, l ) ,  where J :  is also the generator of 
the compact subalgebra so(2). To see this explicitly we define operators J :  and J ;  as 

J :  = Pi + Qi/4, 

32" = Pi - Qi/4. 

(13) 

(14) 

By using the commutation relation 

[Qk, P k . 1  = iskk', 
we find 

[ J : ,  J{]=fi(QkPk-i/2). (15) 
The algebra generated by the commutation of J :  and 52" closes upon the introduction 
of only one additional operator 

J :  = f( QkPk -i/2), (16) 
and the Hermitian operators J : ,  J :  and J ;  have the commutation rules 

If the second commutator had a positive sign, this would correspond to the well known 
three-dimensional angular momentum algebra so(3) or the isomorphic algebra 4 2 ) .  
The angular momentum algebra so(3) or the group SO(3) is compact, since its para- 
metrisation consists of a finite number (three in this case) of bounded domains. The 
negative sign in (17) makes two of the parameter domains of the corresponding algebra 
unbounded. This algebra, denoted by so(2, l ) ,  is therefore called noncompact. A 
result of the noncompactness is that all unitary representations (requiring J t  = J i )  of 
so(2, l )  are infinite dimensional (the unitary representations of the compact algebra 
so(3) are finite dimensional). 

These unitary representations can be labelled by the simultaneous eigenvalues of 
one of the generators Ji and the Casimir operator J 2  which commutes with all elements 
of the algebra. The Casimir operator for so(2,l)  is given by 

J i = ( J 2 " ) 2 + ( J 3 k ) 2 - ( J : ) 2 .  (18) 

If one diagonalises 5' along with the generator JI of the compact subalgebra s0(2), 
then the corresponding representation may be divided into two distinct categories: 
C(continuous) and D(discrete). In the C representation the eigenvalues of J 2  are 
continuous, with a lower bound but without an upper bound, while the eigenvalues 
of JI are discrete but unbounded both above and below. Since the spectrum of the 
Hamiltonian representing a physical system must be bounded below, the C representa- 
tion is not suitable for describing the spectrum of such a Hamiltonian. In the D 



Dynamical algebra of spin waves 909 

representations the eigenvalues of J 2  are discrete and the eigenvalues of J ,  form infinite, 
integer-spaced spectra. In one of these discrete representations, denoted usually by 
Df (Wybourne 1974, pp 146-8), the spectrum of JI is bounded below: 

J~ = I j a )  = j (  1 - j ) l ja ) ,  j = ;  , 1 2  3 2 , e . a  ( 1 9 )  

where 

a =J+ n, n = 0 , 1 , 2  , . . . .  
The spectrum ( 2 0 )  with j = i  is the harmonic oscillator spectrum and will be used 
repeatedly in discussing the dynamical algebra of spin waves. 

Instead of diagonalising J 2  and J ,  simultaneously, one may choose to diagonalise 
J 2  along with one of the generators of the noncompact subalgebra so( 1 , 1 ) ,  i.e., J2 or 
J3. The spectrum of J2 or J3 in the resulting unitary representation is continuous and 
bounded below (Barut and Phillips 1968). 

We now return to the Hamiltonian ( 1  1 ) .  In terms of the generators of so(2 ,  1)  it 
can be written as 

Hred = + C Htu Hk = ( 2 J :  -$)hut ,  ( 2 1 )  
k 

i.e. the Hamiltonian is an element of the direct sum of isomorphic Lie algebras so(2 ,  1)k. 
The eigenvalues of Hred are obtained from the sum of the eigenvalues of J :  and its 
eigenvectors are the products of the eigenvectors of J : .  To obtain these, we need the 
eigenvalues of the Casimir operator (18). With the definitions ( 1 3 ) ,  (14) and (16), we 
find 

J 2  = &, i.e., J = f ,  4. ( 2 2 )  
In the representation DTI4 of so(2 ,  1 )  

J:[ t ,  f +  n )  = (:+ n ) [ f ,  f +  n), 
and in the representation DTI4 

~ f l f ,  f +  n )  = (++ n)l t ,  f +  n ) ,  n = 0 , 1 , 2  , . . . .  (24) 
Thus 

Hklf, :+ n) = ( 2 n  + l )hwklf ,  a +  n) ,  

~ , ( f ,  ++ n) = 2nhwklf, a+ n) .  

( 2 5 )  

( 2 6 )  
Thus the harmonic oscillator eigenstates split into two representations of the algebra 
so(2 ,  1) - su( 1 ,  1 )  according to whether the oscillator energy level is even or odd. These 
are, however, not the ‘true’ representations of so(2, 1 )  or the isomorphic algebra su( 1 ,  1). 
In a ‘true’ representation of this algebra, j is an integer or a half integer (Vi 1968) as 
in equation (19), since it is the lowest eigenvalue of J , ,  the generator of the correspond- 
ing angular momentum subalgebra so(2). The ‘one-boson system’ typifies a fractional 
angular momentum! A partial realisation of the harmonic oscillator states in a ‘true’ 
representation of so(2 ,  1 )  is discussed in the appendix. 

In view of the above discussion we conclude that the spectrum generating algebra 
of the original Hamiltonian (2) is the direct product nk@s0(2 ,  1)k. Energy eigenstates 
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of (2) with even and odd numbers of magnons are realised in the representations DT/* 
and DlI4 of so(2, 1 )  respectively. This result is equally applicable to the spectrum of 
noninteracting phonons. 

Interactions of dipolar structure can be readily included in the discussion. The 
interaction term, including those of dipolar origin, can be written as (Van Kranendonk 
and Van Vleck 1958) 

HI",=-J SI'S]+ ~ l ] ~ s l ~ s ] ~ 3 ~ ~ l ] ~ s l ~ ~ a l ~ ~ S , ) 1 .  (27) 
W N  I" 

The summation over i and j in the second term has to be extended over all pairs of 
spins in the lattice rather than only over the nearest neighbours. The components of 
the unit vector all are the direction cosines of the vector r,] connecting sites i and j. 
If the dipolar interaction has electromagnetic origin, then D, - 1/ri .  However, contri- 
butions to Dll can also arise from anisotropic exchange and the resulting values of D, 
for adjacent atoms can be appreciably greater than those given by classical electromag- 
netic theory. 

The transformation of (27) to harmonic oscillator variables proceeds as before (see 
Mattis 1981, Van Kranendonk and Van Vleck 1958 for details). The resulting Hamil- 
tonian contains terms up to quartic order in the harmonic oscillator variables. The 
term independent of those variables provides an additive constant to (27) and can be 
dropped. The cubic and the quartic terms represent anharmonic corrections and give 
rise to interactions among the spin waves. Thus they can be dropped if one is interested 
only in the spectrum of noninteracting excitations. The contribution due to the linear 
term is a factor NI/' smaller than that due to the quadratic term, and hence can be 
dropped in the limit of large N. Thus, retaining only the quadratic terms, one obtains 
the form 

Hred = f L A ( k )  Q'k + B(k)Pi + 2 c (k) QkPkl + Eh, (28) 
k 

where Eh is a constant. The quantities A, B and C are given by lattice Fourier sums 
involving Dll and the components of the vector a,. In the absence of the dipolar 
interaction, C vanishes, and A and B reduce to the energy of a spin wave k given by 
(12). A, B and C satisfy the conditions A >  0, B >  0; A, B >  C. The Hamiltonian (28) 
can be diagonalised by  Bogoliubov transformation to a new set of harmonic oscillator 
coordinates. However, this transformation is equivalent to a rotation in the space of 
the algebra so(2, 1) .  In terms of the generators Jf ( i  = 1,2,3), we have 

H r e d - E h = C  H k  
k 

where 

H k  = [ A ( k )  + B(k)]J: + [ A ( k )  - B(k)]J,k+2C(k)J,k, (29) 

where we have included a term involving C ( k )  (c-number) in the zero-point energy 
Eh of the system. We now consider a rotation about the axis J:. Using 

e-IJ3'J, elJ3@ = J2 sinh 0 + J, cosh 0, 

eCJ3'J2 elJ3' = J2 cosh 0 + J, sinh 0, 

H i =  e-i'3'Hk elJ3' = J:[4A( k ) B (  k) ] ' ' 2  + 2C( k)J:, 

(30) 

(31) 

(32) 

we obtain the rotated Hamiltonian 
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where we have chosen 8 to satisfy 

tanh 8 = [ B(  k )  - A( k ) ] / [  B( k )  + A( k ) ] .  (33) 

A further rotation of H; about the axis J $ ,  utilising 

and choosing 4 to satisfy 

tanh 4 = C(k)/(A(k)B(k))’/’, 

yields 

HE = exp(-i+J$)H; exp(i4Jt)  = 2J:[A(k)B(k) - C ( k ) 2 ] ’ / 2 .  (37) 

This form is similar to (21) and all the previously derived results can be used to discuss 
the spectrum. The rotations needed to eliminate J :  from Hk cannot be realised since 
A( k )  + B( k )  > A( k )  - B ( k )  and A( k ) B (  k )  > C( k)’ .  This eliminates the possibility of 
a continuous spectrum for Hk, which would require that Hk be expressed only in terms 
of the generator J :  or J :  of the noncompact subalgebra so( 1 , l ) .  

The eigenvalue equation 

E k l n k )  

is equivalent to 

Hk exp(i8J:) exp(i&)lnk) = & exp(i8J:) exp(i&))nk), (38) 

i.e., the eigenvalues of Hk are those of HE, but the eigenstates are to be obtained by 
subjecting the eigenstate of J :  to successive rotations about the axes J ;  and J :  through 
angles #J and 8 defined by equations (36) and (33)  respectively. The eigenstates of 
the total Hamiltonian are the products over k of the rotated eigenstates of J : .  

As pointed out by Solomon (1981), the above rotation need not be carried out 
explicitly in order to obtain the spectrum (37). Instead, one can write Hk in a 
low-dimensional faithful representation of so(2, 1).  For example, Ji ( i  = 1,2,3) can 
be represented by two-dimensional matrices, 

J1=i[’ -13. J2=;[-1 ‘1, J,=-’[ 2 1  ‘ I .  (39) 

The Hamiltonian Hk can be written as a matrix M, 

1 M = L [  (A+  B )  (A-B)-2Ci  
2 - (A-B)-2Ci - (A+B)  ’ 

where we have suppressed the k dependence of A, B and C for typographical simplicity. 
We now consider the invariants Tr M ” ,  n = 1,2, .  . . . Tr M is a null invariant and 

Tr M 2  = 2(AB - C2). (41) 

Higher values of n do not produce any new invariants for this rank-1 algebra. Thus 
Hk can be diagonalised to 2J:(AB- C2)l” if AB> C2 or to 2Jt,3(C2-AB)1’2 if 
AB< C2. The condition C 2 < A B  eliminates the latter possibility and hence there is 
no continuous spectrum associated with Hk. 
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4. Spin waves in antiferromagnets and ferrimagnets 

We now consider a system of 2 N spins with nearest-neighbour antiferromagnetic 
exchange interaction in a fictitious magnetic field H A  (Kittel 1963, ch 4). These spins 
occupy sites on two interpenetrating sublattices a and b such that all the nearest 
neighbours of an a site are b sites and vice versa. The fictitious field H A  approximates 
the effect of the crystal anisotropy energy. The Hamiltonian for this system is 

1 

where J is the nearest-neighbour exchange integral, positive for antiferromagnetic 
interaction. h is a magnetic field ( H A )  dependent quantity and the sites j and 6 are 
nearest neighbours of each other. This Hamiltonian can be expressed in harmonic 
oscillator variables by following the prescription outlined in Q 3. The alternative 
approach is due to Holstein and Primakoff (1940), in which (42) is expressed in boson 
field operators. Though the present discussion could as well be carried on in the 
language of harmonic oscillators, we will now switch to the boson excitation picture, 
thus making explicit contact with both approaches. 

In the boson excitation approach one first defines creation and annihilation 
operators referring to the j th  atoms on the sublattices a and b: 

S,/=(2S)”’(1 -6:6, /2S)bl .  (446) 

S is the magnitude of the atomic spins S, and Sbl. The magnon variables for the 
sublattices a and b are obtained by plane-wave transformation: 

1 1 
D - - exp(ik. rl)6l. 
k - f i  I 

Ck = - exp(ik. rj)aj, J N j  (45) 

The sum for C is over the N atoms j on sublattice a, and for D over the atoms 1 on 
b. Neglecting terms higher than quadratic in magnon field operators, the Hamiltonian 
is reduced to 

Hred = - 2  NZJS‘ - 2 NhS + Ho, H O = c  Hk (46) 
k 

and 

where 
we = 2 JZS, W A =  h, Yk = 2-1 eik.S , 

S 

Z is the number of nearest neighbours and S is a vector joining a typical spin to one 
of its nearest neighbours. 

This two-boson Hamiltonian can be expressed as an element of the direct sum of 
isomorphic Lie algebras so(2, 1 ) in their ‘true’ unitary representation (Solomon 197 1, 
Holman and Biedenharn 1966,1968). Suppressing the superscript k, we define Hermitian 



Dynamical algebra of spin waves 913 

operators JI, J2 and J3:  

J l =  -( C+D++ CD) /2 ,  

J2 = i( C’D+ - C D ) / 2 ,  

53 = ( C + C +  D+D+ 1)/2. 

These obey the commutation rules of so(2,l)  - su( 1 , l ) :  

[ J I ,  521 = 4 J 3 ,  [ J z ,  531 = ~ J I ,  [J3 ,  Jl] = iJ2. 

This makes Hk a linear combination of J3 and JI, and a rotation about J2 by an angle 
8, given by 

tanh 8 = W c y k / ( W e + W A ) ,  

may be used to eliminate JI. Since Y k  < 1, the rotation needed to eliminate the compact 
generator J3 would require tanh 8> 1. This rules out the possibility of a continuous 
spectrum for Hk. 

The Casimir operator in this case has the value 

J 2  = j ( 1  - j )  = $ ( I  -A*) ,  (51) 

where 

A = ~ C + C  - D + D [ ,  

j = (1 + A ) / 2 .  ( 5 3 )  

A is an integer, being the difference between the eigenvalues of two boson number 
operators, and its lowest eigenvalue is zero. Thus 

half-integer A = even, 
J = {integer A = odd. 

The representation Df is thus a ‘true’ unitary representation of so(2, 1) in this case 
and in this representation the eigenvalues of Hk are 

E k  = 2 W k (  n k  +;+ hk/2 ) - (Oe+  W A ) ,  n k = o , l , 2 , 3 , . . . ,  ( 54 )  

( W e +  W A ) 2 - ~ ~ y ~ .  ( 5 5 )  

with 

The ferrimagnetic Hamiltonian is a generalisation of (42), where the spins of the 
atoms in the two sublattices have different values Sa and Sb. Supposing Sa> sb, we 
can write 

(56)  sa = ( 1 + a)S, Sb = ( 1 - a)S, ff > 0. 

In this case Hk assumes the form 

Hk = Wcyk( sasb)”2/ s( c:D: + CkDk) + ( W e  + U#,)/ s( sac: c k  + &,D:Dk). 

In terms of the operators (48)-(50), 

H k  = - 2 W , y k (  1 - f f 2 ) ’ ” J ~  + 2 ( W c  + W ~ ) . f 3  + a ( W C +  @A)( c:ck - DlDk) - ( W e +  W A ) .  

(57) 
The term c:ck - D:Dk commutes with all the operators JI, J2,  and J3. It is in fact 
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related to the Casimir operator via (51) and (52). Hence Hk can be written as 

Hk =-2weyk(1 -(Y2)”’JI +2(we+wA)J3* a ( ~ ~ + w A ) h - ( w , + ~ A ) .  ( 5 8 )  

The positive and negative signs in (58) correspond to the cases where the eigenvalues 
of C’C are greater and less than those of D+D respectively. The spectrum of Hk 
thus has two branches given by 

(59) 2 I / 2  
w :  = [ ( w e +  wA)2 - w:y: (  1 - a )] * a ( w e +  w A ) .  

The effect of introducing an external magnetic field in the Hamiltonian (42) can be 
studied in a similar way. 

5. Spin waves in a quadratic antiferromagnetic with easy-plane anisotropy 

The two-dimensional antiferromagnets have generated considerable interest in recent 
years (Lebesque et a1 1978, Balucani et a1 1980, Lindgard and Kowalska 1976, Cooke 
and Lindgard 1977). In many of these antiferromagnets the anisotropy can be described 
by a staggered anisotropy field HA (similar to that considered in the Hamiltonian (42)). 
However, some of these antiferromagnets have a crystal field anisotropy which favours 
the spins lying in a plane rather than being oriented along a preferential axis. Such 
an easy-plane anisotropy can be described by a term D( Six)’ with D > 0 and X normal 
to the plane. The Hamiltonian in this case is obtained by adding this term for the two 
sublattices to the Hamiltonian (42) considered in 0 4: 

Detailed discussions of this Hamiltonian in the spin wave approximation have been 
provided by Lebesque et a1 (1978) and Balucani er a1 (1980). 

Conventional techniques involving the Holstein-Primakoff transformation lead to 
an imaginary value of a uniform mode ( k  = 0) energy (Lindgard and Kowalska 1976), 
hence modifications in the procedure for obtaining magnon variables are required. In 
terms of the lattice Fourier transforms of the boson operators referring to sites in 
sublattices a and b, the Hamiltonian (60) in the spin wave approximation assumes the 
form 

Hred = t c Hk, 
k 

Hk =Al(U:ak a-ka”_k+ b i b , +  b -kb+k)+A2(a tU+k+a-kak+  b:bTk+ b - k b k )  

+ ck( azbk + a-&?, + biak + b-ka’k) 

+ B k ( U : b t k + U - k b k +  b:aTk+ b-kak) .  (61) 
Here A,  and A2 depend on the parameters J, h and D as well as the expectation values 
of some quadratic and bilinear combinations of the boson operators which appear 
through ‘mean field’ or ‘Hartree-Fock’ type approximations. Ck and Bk depend, in 
addition to the above parameters, on the two-dimensional wavevector k in the YZ 
plane through a term 

S 

where 6 connects a typical spin to its nearest neighbours in the plane. 
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Diagonalisation of a general quadratic boson Hamiltonian such as (61) has been 
discussed by various authors (Colpa 1978, Tikochinsky 1979, van Hemmen 1980). 
The spectrum of (61) consists of two separate branches of magnons with energies 

E;=2[(A,* ck)2-(A2*Bk)2]1/2. (62) 

These two branches can be shown to arise from two distinct so(2 , l )  algebras. The 
form (62) of the magnon energy in the two branches suggests we write Hk as 

(63) H k  = 2{[(Al +ck)Jl  -(A2+ Bk)J21+[(AI - ck)LI - ( A 2 -  Bk)L21), 

with 

J ]  = ( X  + Y)/4, J2 = - ( X ' +  Y')/4, (64) 

L ,  = ( X  - Y)/4, L2 = - ( X ' -  Y')/4, (65) 

where 

J3=$[(U:U'k+ b:b'k+U:b'k+ b:U+k)-(UkU-k+ bkb-k+Ukb-k+ bka-k)], 

L3=$[(U:U?k+ b:bzk+Ukb-k+U-kbk) - ( a k U - k  + bkb-k+ U:b?k+ UTkbl)]. 

(70) 

(71) 

The Hermitian operators Ji and L, ( i  = 1,2,3)  independently satisfy the commutation 
rules of so(2, 1 )  with J ,  and L ,  being the generators of the corresponding compact 
subalgebras so(2); and J, commute with L, :  

[ J I ,  J21 = iJ3, [J2,J3I e -iJ1, [ J 3 ,  J,l= iJ2, 

[h, L21 = i L ,  [b, L31=-iLi9 [L3, U =  iL2, 

Thus Hk isanelementoftheLiealgebragk,wheregk-so(2, l),JOs0(2, ~ ) ~ L - s u ( I ,  I);@ 
su(1, l)kL-s0(2, 2)k; and the total Hamiltonian is an element of the direct product 
algebra nk@S0(2, 2)k. Diagonalisation of (63) can be achieved by separate rotations 
in the space of the two independent algebras so(2, 1); and so(2, I);, or by considering 
the two independent invariants of the rank-2 algebra so(2, 2)k, with each invariant 
being of the form Tr M 2  where 

[ J I ,  L,I = 0,  i , j = l , 2 , 3 .  

The + and - signs in (72) refer to the parts of Hk that belong separately to the two 
nonoverlapping subalgebras so(2, 1 ) in the two-dimensional representation (39). Sup- 
posing (A,  * c k )  > (A,* &),  (63) can be diagonalised to the form 

H;=2{[(A, Ck)2-(A2+Bk)2]"2J,+[(Al - Ck)'-(A,- "k)2]1/2J2}, 

reproducing the spectrum (62). 
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6. Spin waves in the XY model 

Lieb et a1 (1961) have discussed two exactly soluble quantum mechanical models for 
an antiferromagnetic linear chain with nearest-neighbour interactions. These are the 
X Y model and the Heisenberg-Ising model. The Hamiltonians for these models can 
be diagonalised exactly and are therefore worth discussing. The elementary excitations 
in these models obey the fermion statistics. Since the fermions have to obey the Pauli 
exclusion principle, the eigenspectrum of the occupation number operator is bounded 
and we need a compact algebra to generate this spectrum. We show that the compact 
counterpart of so(2, l) ,  i.e., so(3), serves as the dynamical algebra for these models. 
Solomon and Montogomery (1978) have discussed the generalised X Y  model and its 
relation to the two-dimensional Ising model. It was demonstrated that the compact 
algebra so(2N)Oso(2N) is the SGA of the X Y  model of a cyclic lattice of N points. 
In the following we provide an equivalent description in terms of the compact algebra 

The X Y  model consists of N spin-4's ( N  even) arranged in a row and having only 
n k  SO(3)k. 

nearest-neighbour interactions. The Hamiltonian is written as 

H=C[(l+y)S:S:+,+(l  - y ) S ; S ; + , ] ,  (73) 
I 

where y is a parameter characterising the degree of anisotropy in the X Y  plane. 
Because the Hamiltonian involves only the X and the Y components of the spin 
operators, it is called the X Y  model. As y +  1 it reduces to the Ising model. 

Following Lieb et al (1961) we first transform (73) to a Hamiltonian of interacting 
fermions. The steps involved in this procedure are similar to those in the boson model. 
However, the fermion anticommutation rules do present some problems and additional 
steps are needed to achieve the goal. One first introduces the creation and annihilation 
(or the raising and lowering) operators referred to the site i in the chain: 

u t  = S: +is;, ai = S: - is;, (741 

in terms of which the spin operators are 

s; = (ai + a t ) / 2 ,  
ST = u ta .  -1 

S ;  = ( a t  - ai)/2i, 

1 1 1 2 ,  

and the Hamiltonian is 

H = ' C (  2 Uta,+, -k ')'UtU:+l -k H C ) .  
I 

These operators partly resemble Fermi operators: 

a.a. = a'at = 0 { a ,  a t } =  1, I I  I I , 

and partly Bose operators: 

[ a t ,  a j ] = [ a t ,  U f ] = [ u i ,  aj1=0, i # j .  

To construct pure Fermi operators out of these we define 

( 7 5 )  

ci =exp ni .faj ai, ( '1' ) 
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c i  = a i  exp -Ti + + (  I 
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(78) 

such that c;ci = a t a ,  and the inverse transformation is 

a t = c t e x p  ni cfc, . r : )  1 - 1  

ai = exp( -ni c~c,) c,, 

The c's obey the Fermi statistics: 

{c ,  c;> = a,, { Ci, C j }  = { c;, c;> = 0. 

For a cyclic chain the Hamiltonian is 

(79) 

N 
H = f [ (c tc i+ l  + yctC;+~)  + HC]+ h, ( 8 1 )  

1 

where h is a correction term which can be ignored for large systems. To diagonalise 
H ( h  = 0) we transform to a new set of Fermi operators 

where rj denote the positions of the spins on the chain. If a is the interspin distance, 
then 

H = c H k  
k 

Hk = C O S  ka(c:ck+C+kC-k)/2+ y Sin kai(C:Ctk+CkC-k)/2. ( 8 3 )  

We now express Hk as an element of the angular momentum algebra SO(3)-su(2) .  
We define Hermitian operators 

JI = ( C l C k  + C T k C - k  - 1 ) / 2 ,  ( 8 4 a )  
5 2  = i( c:c?k + ckc-k)/2, ( 8 4 6 )  

J3= (c:c?k-ckc-k)/2,  ( 8 4 c )  

[ J I ,  J 2 l =  iJ3, [ J 2 ,  531 = ~ J I ,  [J3,  J1] = iJ2. ( 8 5 )  

which close under the commutation of s o ( 3 ) :  

Hk in ( 8 3 )  is a linear combination of the generators JI and J2. It can be diagonalised 
by considering a rotation about the axis J3 and using the relations 

e-'-'3'~, eiJ3' = j1 cos e + J~ sin e, 
e-'-'3'Jz eiJ3' = J2 cos 0 - J1 sin 0, 

(86 )  

(87) 
or by realising Ji in terms of the Pauli spin matrices: 

and expressing Hk as a two-dimensional matrix: 

0 cos ka - i y sin ka 
0 cos ka + i y  sin ka 
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Tr M is a null invariant, while Tr M 2  generates the spectrum 

E’, = 1 - ( 1  - 7’)  sin’ ka. 

The spectrum of the Hamiltonian in the Heisenberg-Ising model, 

can be obtained in a similar way. 

7. Comments and conclusions 

We have shown that the spin wave or the magnon energy spectrum in various localised- 
spin models can be obtained by using so(2, 1) - su( 1, 1) or so(3) - su(2) as the dynarrii- 
cal algebra. In conventional localised-spin models (with nearest-neighbour exchange 
interaction as well as terms due to dipolar coupling, crystal field and planar 
anisotropies) of ferromagnetic, ferrimagnetic and antiferromagnetic Bravais lattices 
the Hamiltonian can be written in a quadratic boson form and can be studied by using 
the unitary representation of the noncompact algebra so(2, 1). The approximations 
involved in obtaining the quadratic boson form involve neglecting higher-order terms 
as well as replacing certain quadratic and bilinear combinations of boson operators 
by c-numbers. Such approximations are collectively referred to as ‘spin wave approxi- 
mations’. For the X Y  and Heisenberg-Ising models (Lieb er al 1961) of an antifer- 
romagnetic linear chain no such approximation is necessary. In these exactly soluble 
models the Hamiltonian of the interacting spin system can be expressed as one of 
interacting fermions. These quadratic fermion Hamiltonians can be studied by using 
the unitary representation of the compact algebra so(3). Algebraic structure of quad- 
ratic boson and fermion Hamiltonians (Vi 1968, Holman and Biedenharn 1966, 
Moshinsky 1968) has been discussed previously in the literature (see appendix). In 
this paper we apply these results to systems of localised interacting spins. 

It is desirable to extend this preliminary study to nonlocalised or itinerant spin 
models of magnetic systems and to describe one- and two-magnon bound states and 
soliton-like excitations in various models (Mattis 1981). Finally one would like to 
consider Hamiltonians with electron, phonon and magnon coordinates involving elec- 
tron-phonon, electron-magnon and magnon-phonon couplings. Such a study is expec- 
ted to shed some light on the interplay of superconductivity, magnetism and charge 
density waves (Huang 1985). Solomon and Birman (1984a, b, 1985) have already 
offered an algebraic description of a coexisting antiferromagnetic-superconducting 
system, for which the SGA is su(8). 
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Appendix 

A. 1. so(3) and the interacting fermion Hamiltonian 

Let us first consider an interacting many-fermion system. We suppose that this Hamil- 
tonian can be diagonalised by transforming to a new set of fermion operators. In the 
diagonal form the Hamiltonian is 

where a: and ak are the creation and destruction operators for the new set of 
noninteracting fermions in state k In order to write Hk as an element of a Lie algebra, 
we define Hermitian operators 

J ,  = i(a: - uk)/2, J2=(ak+al ) /2 .  (A21 

J3 = (Ulak  -4). (A31 

The algebra generated by J ,  and Jt closes upon introducing a third operator 

The Hermitian operators J1, J2 and J3 generate the algebra so(3) - su(2). In a unitary 
representation of so(3) the eigenvalues and eigenstates of Hk are given by 

Hk l jkm k ,  = Y k  (J," + i) l jkm ') = Yk (m + f ) l  j km k ) ,  ('44) 
k with m k  = - j k ,  - j k +  1,.  . . , j . Here jk is related to the eigenvalue of the Casimir 

operator or the total angular momentum 

J : =  (J:)2+(J:)2+(J;)2 ( ' 45 )  
by 

J i l j k m k ) = j k ( j k +  l ) l jkmk) .  ( -46)  

Using (A2) and (A3) we find 
J 2  - 1  j k  =; - 3  

k - 4 9  9 2. ('47) 

Thus the eigenstates of Hk provide a 'spinor' representation of so(3)-su(2). Using 
the representation DlI2  of so(3), 

Thus the state If 4) corresponds to a filled k state, i.e., 

It 4) = a J o )  

where 10) is a state in which the kth level is empty. 
Since the diagonalised Hamiltonian (AI) is an element of the algebra nk@S0(3)k, 

so must be the original Hamiltonian. The diagonalisation induces a rotation in the 
space of nk@so(3)k and brings the Hamiltonian into the form (Al) .  Thus we conclude 
that if an interacting fermion Hamiltonian can be transformed into the form (Al)  then 
the SGA is so(3). It should be noted that the SGA of a general quadratic fermion 
Hamiltonian is larger than so(3) (Solomon and Birman 1982). It is only when the 
Hamiltonian can be diagonalised to the form (Al)  that it can be described as an 
element of nk@s0(3)k. 
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For most real systems of fermions, the interactions give rise to terms higher than 
quadratic in the Hamiltonian. Since the diagonalisation requires a quadratic form, 
one has to resort to approximations. These are the familiar mean field, semiclassical 
or Hartree-Fock approximations where certain operators or combinations of operators 
in the Hamiltonian are replaced by classical numbers, in addition to dropping higher- 
order terms. In the theory of superconductivity such approximations give rise to the 
reduced BCS Hamiltonian. The SGA of this quadratic fermion Hamiltonian is known 
to be so(3) (Solomon (1981), see also spin analogue treatment of Anderson (1958)). 
In the XY and Heisenberg-Ising models of an antiferromagnetic linear chain no such 
approximation is necessary. 

A.2. so(2, 1) and the interacting boson Hamiltonian 

We now consider an interacting many-boson system whose Hamiltonian can be 
diagonalised and expressed in the form (Al) .  a; and ak are now boson creation and 
annihilation operators referring to noninteracting bosons in state k. Upon introducing 
Hermitian operators 

we realise the algebra so(2, 1)-su(1, l ) ,  with J3 being the generator of the compact 
subalgebra s0(2)-su(l). The choice of generators (A10) is equivalent to the choice 
(13), (14) and (16) used in the discussion of the ferromagnetic Hamiltonian in terms 
of harmonic oscillator variables. The value of j in this case is a or f .  The ‘one-boson’ 
states split up into two representations D:/4 and DTI4 of so(2, l ) ,  which are not its true 
representations. In order to discuss the boson Hamiltonian (Al)  in true representations 
of so(2, 1)  we can write it in the form 

assuming 

Y k  = 7 - k .  

Omitting for the time being the k = O  (uniform mode) term in ( A l l )  one can define 
Hermitian operators 

which generate the algebra so(2, I )  with J3 as the generator of the subalgebra so(2). 
The Casimir operator in this case has the value 

j (1- j )=+( l -A2) ,  A= la:ak-aTka-kl 

and j = (1  + A)/2, i.e., an integer ( A  = odd) or a half integer ( A  = even). In the absence 
of the k = 0 term, Hk can thus be expressed as a ‘two-boson’ Hamiltonian and realised 
in a ‘true’ representation of so(2, 1).  For a superfluid boson system the Bogoliubov 
prescription for replacing the zero-momentum operators by their classical values, 
assuming macroscopic occupation of the zero momentum state, achieves this goal 
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(Solomon 1971). However if the k = 0 state is present, it needs to be treated separately 
by defining generators 

Jy=(aofal+ aoao)/4, 

J :  = ( 1 + 2ao+ao)/4, 

J:  = i( aoao - aofao+)/4, 

of the algebra so(2, Accordingly the k = 0 states of Hk are realised in the representa- 
tions DZ,4 and D:,4 of so(2, and typify fractional angular momentum. Fortunately 
very often the k = 0 term does not give rise to interesting dynamical effects. For example 
the k = 0 phonon mode refers to uniform translation of the crystal and does not 
contribute to its transport properties. Hence this term can often be dropped or supposed 
to be included in the zero-point energy of the system without losing any interesting 
effects. 

Thus we conclude that a quadratic boson Hamiltonian which can be put in the 
form (A5) can always be studied in unitary representations of so(2, 1). In order to 
achieve a realisation in a true representation it is necessary to write each Hk as a 
‘two-boson’ Hamiltonian and treat Ho separately. In the case of ferrimagnetic or 
antiferromagnetic solids, the ‘two-sublattice’ structure makes Hk a truly ‘two-boson’ 
Hamiltonian and there is no need to treat the k = 0 mode separately. It is to be noted 
that a general quadratic boson Hamiltonian may belong to an algebra larger than 
so(2, 1) (see e.g. realisation in symplectic algebras, Rowe (1978)). It is only when it 
can be transformed to the form (Al)  that its SGA is n k  so(2, 1 ) k .  
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